

DGDC Meeting Minutes - DRAFT May 13, 2021

Attendance List:

	Ulateria Decementian
Jennifer Anderson-Reno	
Stephen Bayer	
Lori Brown	
Anna Cava Grosso	
Luis Cetina	
Kim Cloud	
Carol Conroy	
Adam Crosby	
Justin Cusick	Esri
Tim DeSchepper	City of Middletown
Andrew Falker	Esri
Lauren Frick	Dept. of Agriculture
Meghan Garrett	.DFM
Jeremy Gibb	
Jay Hodny	City of Newark
John Inkster	DNREC
Jimmy Kroon	
Matt Laick	
Brian Laws	
Tim Loftus	J
Joel Marshall	
Thomas Matich	
Dawn McCall	
Morgan McGee-Solomon	
Erica McMaster	
Nicole Minni	
Megan Nehrbas	
Stacy Norland	
Colton Phillips	
Miriam Pomilio	
Mark Prettyman	DINREC Ovalamadia
Jason Sealy	
Justin Shawler	-
Olena Smith	
Sigrid Smith	
Bill Stephens	Stephens Environmental
Bradley Strittmatter	
Debbie Sullivan	
Mike Townshend	
Helen Tripp	Delaware State University
Sharon Ungerer	DNREC
Seth VanAken	
Devin Waggoner	
Lillian Wang	Delaware Geological Survey
	Delaware Geological Survey
Darin Windsor	
Julia Wolanski	
George Yocher	DHSS-DPH

Welcome & Introductions

Miriam Pomilio started the meeting at 9:32 am. She welcomed everyone to the meeting and introductions were made.

February 11, 2021 Meeting Minutes

Mike Townsend made a motion to approve the February 11, 2021 Meeting Minutes. The motion was seconded by Lori Brown and it passed unanimously.

Geospatial Education Committee

Nicole Minnie reported for the Geospatial Education committee. The Geospatial Education site will host a virtual event for GIS Day. The committee will be reaching out for assistance as we get closer.

If you know of resources, you think could be included for teachers let Nicole Minni and Miriam Pomilio know. We continue to need additional GeoMentors, if you're interested in volunteering some of your time to schools and/or special educational events, please contact <u>Nicole Minni</u>.

FirstMap 2.0 Update & G-TAC

Mike reported about the G-TAC meeting held last week. FirstMap 2.0 will require changing URL's in your applications. There is a spreadsheet on the FirstMap website that provides URLS to help with updating the URLs. The old servers are going away in the future and if content is not updated, it will be lost.

Delmarva GIS Conference Update

Joel Marshall reported that the Delmarva GIS 2022

Conference: A Wave of Recovery will be held at the Hyatt Place in Dewey Beach, DE on May 12, 13 and 14th. The 12th will be the pre-conference workshop and a Mappy Hour; the 13th will be the full conference day and the 14th will be for post conference activity. Visit <u>Delmarva GIS 2022 Conference – A</u> Wave of Recovery (degis.org) for more information.

Presentations

Esri presented on Working with LiDAR in ArcGIS. A copy of their presentation is attached.

Bill Stephens presented on his work with Drones, Photogrammetry & Survey Control Points. A copy of his presentation is attached.

Federal Update

USDA – Art Walker is working on aerial imagery from the 1980's and will share when completed.

Open Comment Period

Miriam – Data survey results available, contact her if you'd like a copy. She will be working on preparing an RFP for imagery, LiDAR, and Land Use Land Cover. Funding remains an issue, so if your agency has funds that can be earmarked for these data updates, contact Miriam.

OSPC has published the Development trends data (building permits and development applications) to FirstMap 2.0. This data covers from 2008 through 2020.

Justin Shaler – Utility of commercial satellite imagery, would like advice and feedback of quality and RFI.

Matthew Laick –Pictometry imagery was flown this spring and will be available soon for public safety use.

Next Quarterly Meeting

The next quarterly meeting will be held on August 12, 2021 from 9:30 until noon. Depending upon COVID restrictions, it may be at the Dept. of Ag conference room, with additional access via Zoom. See the DGDC website for information and updates as they are available.

Adjournment

Olena Smith made a motion to adjourn the meeting and it was seconded by Jason Sealy. The DGDC Business meeting was adjourned at 11:24 am.

Working with Lidar in ArcGIS

Seth Van Aken

Tim Loftus

President and a section of the section of the

140

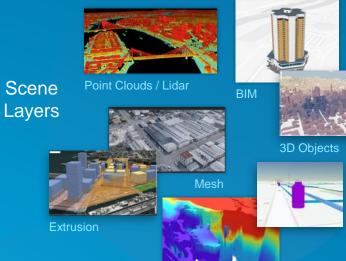
H

Agenda

- ArcGIS System Capabilities
- FirstMap Lidar Point Cloud
- ArcPro Working w/ Lidar
- ArcGIS Solutions 3D Basemaps
- Demonstration
- Resources

Imagery and Remote Sensing

ArcGIS is a comprehensive imagery platform



Support for All Imagery and Rasters

3D GIS Visualization & Data Management

3D Information Model

Voxels

Global Visualization

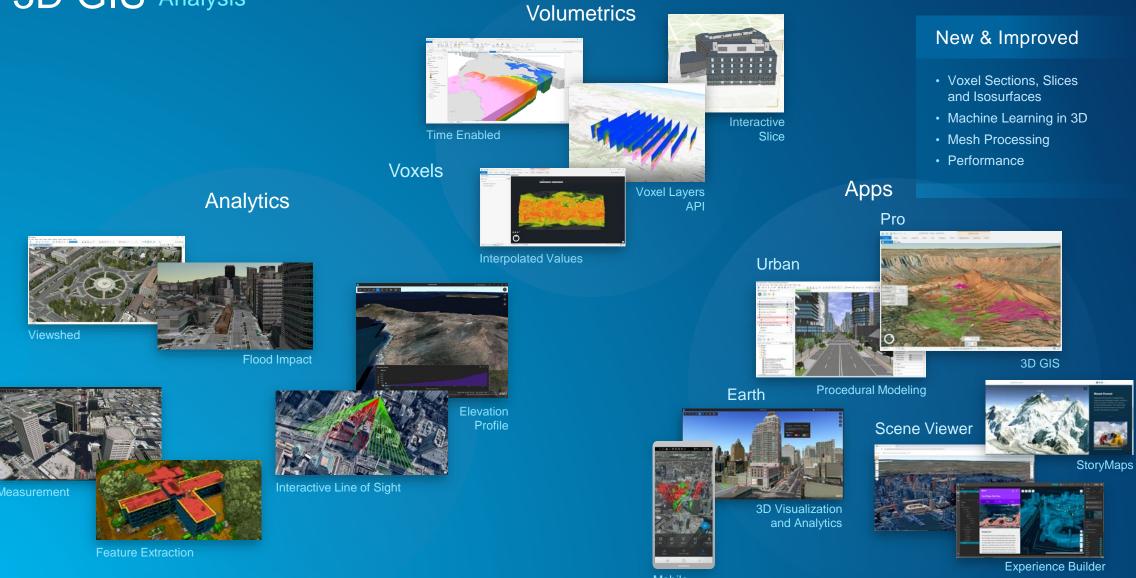
ArcGIS Earth

Symbology and

Smart

Mapping

New & Improved


- Voxel Layers
- BIM
- Interactive Mesh Tools
- Rendering and Symbols
- Mobile and Offline Workflows
- Integration with Game Engines

Advanced Visualization

Available Across the Platform

$3D \; GIS \;$ Analysis

Mobile

FirstMap – Lidar Point Cloud

- State Lidar hosted in ArcGIS Online
- Stored as a point cloud scene layer
- Developed w/ the Living Atlas Team
- Colorized Lidar Points
- Includes a 3D Web Viewer
 - Measure Length, Height & Area
 - Includes download capability
- Preview & explore the data before you download

ArcGIS - Delaware 3D Lidar Point Cloud Viewer @

& Sign I

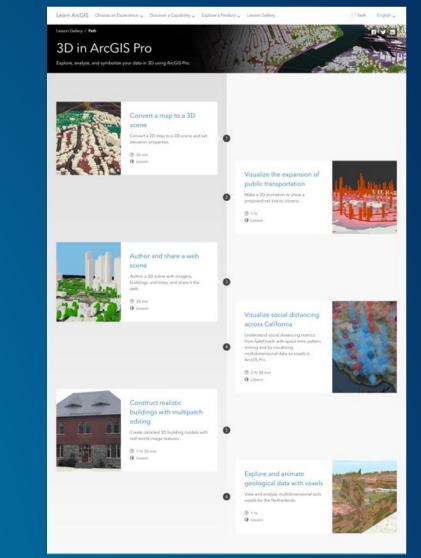
ArcGIS Pro – Working With Lidar

- Supports LAS or Optimized LAS(.ZLAS)
- Work with native LAS, mosaic data set or a point cloud scene layer
- Native LAS
 - View LAS in 2D and 3D
 - Visualize using elevation, slope, aspect or contour lines
 - Edit LAS data
 - Input to 3D Analysis
- Mosaic Dataset
 - View Lidar as raster
 - Use it as a DEM
 - Orthorectify imagery
- Point Cloud Scene Layer
 - Fast display of large volumes
 - Symbolized and filtered point cloud data
 - Geoprocessing 'Share Package' to publish to ArcGIS Online or ArcGIS Enterprise

ArcGIS Solutions – 3D Basemaps

- Solution Template to Create 3D Basemaps
 Utilizing Lidar, Building Footprints & Utilities
- Provides a series of workflows that helps streamline the creation and maintenance of 3D Basemaps
- Requires ArcGIS Online or ArcGIS Enterprise 10.6 or later, ArcGIS Pro Advanced, 3D Analyst and Spatial Analyst
- Storymap on 3D Basemaps Solution

Demonstration


Tim Loftus

Resources

- 3D Basemaps Solution
- Esri Academy
 - Instructor Led Working with Lidar in ArcGIS
 - Web Courses Managing Lidar using LAS & Mosaic Datasets
 - Video Lidar in ArcGIS
- <u>3D Tutorials at Learn.arcgis.com</u>

QR 3D Basemaps Solution

Webinar – Today, 2-3PM

How to work with Imagery & Lidar in ArcGIS Online

Thu, May 13, 2021 2:00 PM - 3:00 PM EDT

Show in My Time Zone

Working with imagery and lidar in ArcGIS just got much easier. "ArcGIS Image" is a new addition for ArcGIS Online designed to greatly simplify how organizations store, access and analyze remotely sensed content from satellites, aircraft, and drones. It's a great starting point for Reality Capture, GeoAI feature extraction, 3D mapping, and land cover analysis. And to make things real simple, we can even pre-load high resolution aerial imagery and elevation data into ArcGIS Image for you from our premium content partner Hexagon. Please join us to see how ArcGIS Image can modernize your GIS with the power of imagery.

*Required field

First Name*

Last Name*

Email Address*

By clicking this button, you submit your information to the webinar organizer, who will use it to communicate with you regarding this event and their other services.

Register

svanaken@esri.com

&

tloftus@esri.com

High Resolution High Accuracy Site Specific Orthomosaics Using Drone-Acquired Nadir Images With Surveyed Ground Control Points

By: Bill Stephens, PG, President Stephens Environmental Consulting, Inc.

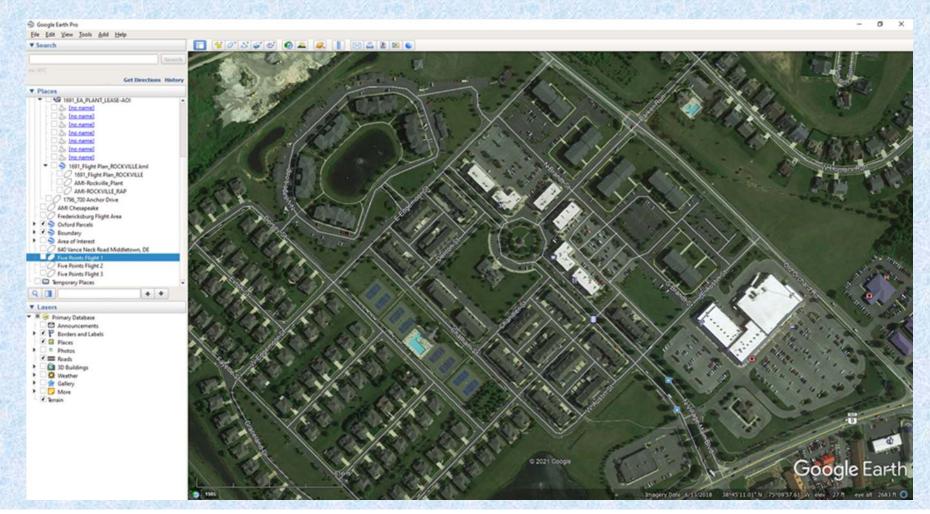
What's Involved: Think it through!

The Drone Flight Planning & Image Capture Process & Software

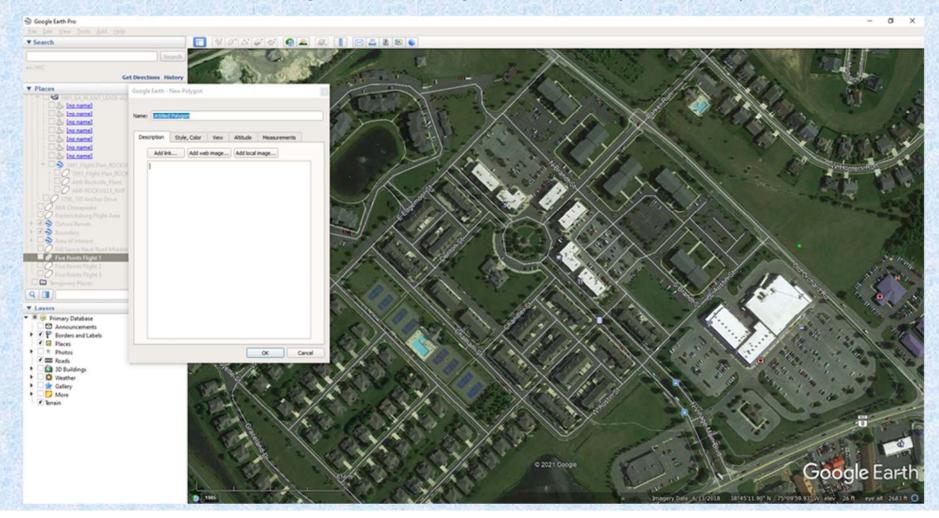
- Drone must be capable of capturing nadir images of sufficient quality & pixel density to attain the desired orthoimage quality and capable of being driven by software.
- Camera should have at least 65d FOV
- Adjust Camera settings before flight.
- Manual adjustments to camera desirable
- Software must be compatible with drone, up-loadable flight plan
- Pick your AOI polygon and upload it to the flight planning software
- Overlap typically >/= 70% forward, >/= 65% Side
- Decide on flight altitude, GSD, home point position, buffer, number of flights, etc.

Survey Planning-Ats/GCPs

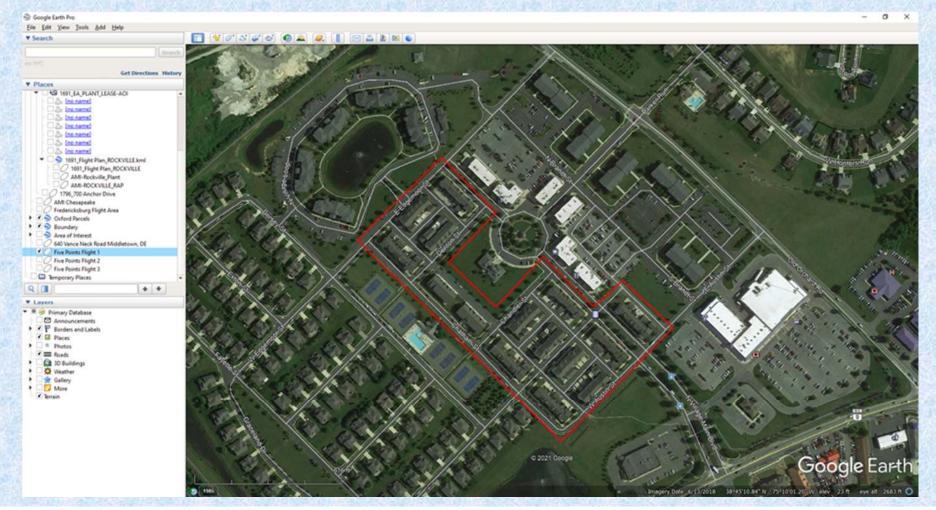
- Most GCPs will be set with survey grade Network or other GPS Equipment, or Conventional location from GPS control
- GCPs must be out in the open
- GCPs must be captured in not less than 4 images, but preferably 8 or more.
- The accuracy of the points should be 1-2cm (<1" or 0.08'). Lower accuracy may warp the ortho.
- Software AI drives preferred target style.
- Must have checkpoints for evaluation of solution


Setting Ground Control Points (GCPs)

12" Target, Style ideal for Drone Deploy Al. Cheap floor tile and printed paper target



Always set the targets OUTSIDE the area of interest and then add 15m buffer to assure plenty of overlap at edges

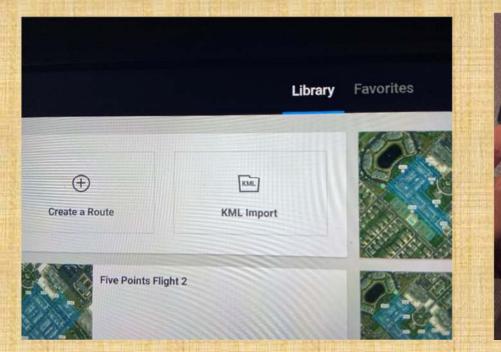

Our Flight Planning Starts by Navigating to the Area of Interest (AOI) in Google Earth Pro for the latest publicly available imagery

Create a New Polygon that will serve as your Flight AOI to be imported into the Flight Planning Software (DJI Pilot)

Once you are done, right click on the polygon and click "Save As" to the folder of your choice. Save as a .KML file

Flight Planning (Cont'd)

Copy/Transfer the .KML from your computer onto a flash drive or SD card and plug into your tablet or Smart Controller



Navigate to DJI Pilot and click "Mission Flight"

Flight Planning (Cont'd)

Select "KML Import" and upload the file from the flash drive. This part of mission planning is best done in the office with strong WiFi.

The Polygon should appear in the correct mapping area. (no camera image as the drone is disconnected from the controller)

Flight Planning (Cont'd)

This enlarged view shows the actual flight paths in green along which individual camera shots/images will be acquired. Also shows the length of the individual flight lines. Now select the flight properties: Camera type, altitude, take-off speed, speed. Note the GSD is computed and the SOG is automatically set. The GSD here is 1.31 cm/pixel, about $\frac{1}{2}$ ".

LET'S GO FLY!!

POST-FLIGHT ACTIVITIES Pre-Processing Data Management

Drone Images "Cameras"

- The "cameras" or individual image frames are captured on a micro-SD card and must be transferred to your computer for further processing. The Micro's come with a "sled" that fits most computer SD card slots.
- Transfer the images to a single folder in the location of your choice on your computer or server. Don't mix other images!!!!
- Clean the SD card before the next use.

Survey Data Prep.

- Export the ascii or csv file format from your survey data collection device to the folder of your choice.
- Use the appropriate template required by the software. Make sure points are sequentially numbered and checkpoints are coded as such.

Reformatting the surveyed GCPs

Typical output from Survey device: PNEZD format with no header.

201	274476.1226	726100.7724	23.4851	GCT MN
202	274541.3537	726204.6067	23.9101	GCT MN
203	274274.7609	726023.3464	22.8405	GCT MN
204	274106.3098	725994.5605	22.0419	GCT MN
205	274421.7352	725675.5377	21.7501	GCT MN
206	274418.7071	725867.6119	22.7717	GCT MN
207	274739.9042	725997.7629	22.4671	GCT MN
208	274057.4335	726218.3219	23.6382	GCT MN
209	273844.6529	726261.0817	23.3768	GCT MN
210	273627.4091	726505.0224	23.5514	GCT MN
211	273851.3503	726552.8559	23.992	GCT MN
212	273850.975	726732.9954	24.0429	GCT MN
213	274065.0543	726942.4724	23.9622	GCT MN
214	274244.6227	726747.2027	22.931	GCT MN
215	274319.3362	726429.3482	23.668	GCT MN
216	274201.3267	726386.8305	24.0858	GCT MN
217	274019.7642	726381.0686	23.7958	GCT MN
218	274019.165	726547.985	24.1869	GCT MN
219	274079.8546	726735.0966	23.6141	GCT MN

Reformatted per Drone Deploy Template.

GCP	Label	Northing	Easting	Elevation (ft)
	201	274476.1226	726100.7724	23.4851
	202	274541.3537	726204.6067	23.9101
	203	274274.7609	726023.3464	22.8405
	204	274106.3098	725994.5605	22.0419
	205	274421.7352	725675.5377	21.7501
	206	274418.7071	725867.6119	22.7717
	207	274739.9042	725997.7629	22.4671
	208	274057.4335	726218.3219	23.6382
	209	273844.6529	726261.0817	23.3768
	210	273627.4091	726505.0224	23.5514
	211	273851.3503	726552.8559	23.992
	212	273850.975	726732.9954	24.0429
	213	274065.0543	726942.4724	23.9622
	214	274244.6227	726747.2027	22.931
	215	274319.3362	726429.3482	23.668
	216	274201.3267	726386.8305	24.0858
	217	274019.7642	726381.0686	23.7958
	218	274019.165	726547.985	24.1869
	219	274079.8546	726735.0966	23.6141

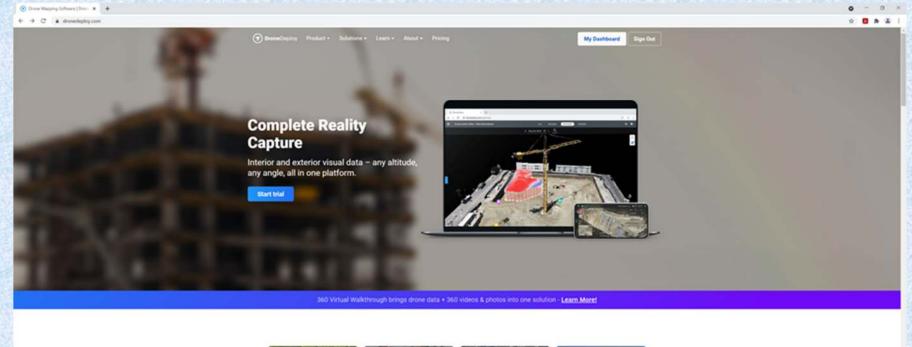
Drone Deploy Image Upload

Grab all the nadir images previously compiled in a single file. Do not include any images not part of the same flight or part of multiple backto-back flights from the same home point with the same altitude setting/camera settings, etc.

ganker • New folder						用 • 💷
Quick access	<u>^</u>	Nome	Date modified	Type	Size	
		 DJI_0691 	12/23/2020 12:42 PM	JPG File	0,585 KB	
Desktop	1	 DH_0695 	12/23/2020 12:42 PM	JPG File	8,497 XH	
Downloads	1	 Dst_0693 	12/23/2020 12:42 PM	IPG File	8.526 (0)	
Documents	1	 DJI_0694 	12/23/2020 12:42 PM	JPG File	IL699 KB	
Pictures	1	DJI_0695	12/23/2020 12:42 PM	JPG File	ILB10 KR	
1646 EQ EPA COMPLAINT	1	 Dil_0696 	12/23/2020 12:42 PM	JPG File	9.069 83	
USGS_TOPO_SCANS_PAGS_06_19_2019		 DJI_0697 	12/20/2020 12:42 PM	/PG File	9.029 (0)	
	2 H	 D3L0698 	12/23/2020 12:42 MM	JPG File	9,039 838	
115APPLE_01-06-2021_DUMP		 DJI_0699 	12/20/2020 12:42 994	JPG File	8,748.83	
117APPLE 05-10-2021		- D.R_0700	12/23/2020 12-42 PM	IPO File	0.645.93	
SA .		 D#_0701 	12/23/2020 12:42 PM	/PG File	.0.717 KE	
SEMINAR-ORONE MAPPING		 Dit_0702 	12/23/2020 12:42 PM	JPG File	11.57.1 KB	
Creative Cloud Files		DH_0703	12/23/2020 12-42 PM	JPG File	0.641 838	
		• D/I_0704	12/23/2020 12:42 PM	7PG File	8.076 ×3	
Dropbox		 DJL 0705 	12/23/2020 12-42 PM	JPG File	11,008 KB	
This PC		DJI_0706	12/23/2020 12:43 PM	JPG File	9.456 ¥3	
ins re		 DJL 0707 	12/23/2020 12:43 PM	JPG File	9.322.43	
SD0C (G)		 DJI_0708 	12/20/2020 12:43 PM	IPG File	0.680 KD	
DOM		D3L0709	12/23/2020 12:43 PM	IPG File	£575 KB	
		 DJI_0710 	12/20/2020 12:43 PM	JPG File	9.695 KB	
Network	~	• DR.0711	12/23/2020 12543 PM	JPG File	9,762 83	

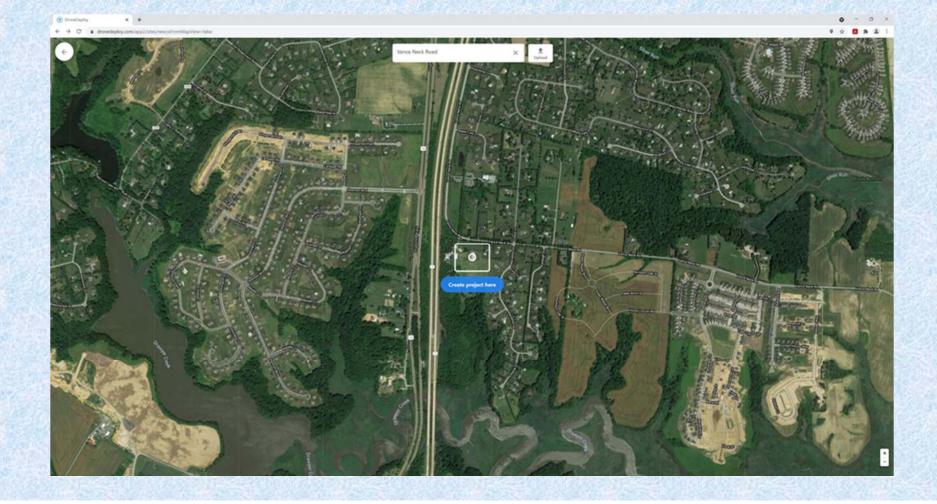
Sample single "camera" from Five Points showing the home point helipad.

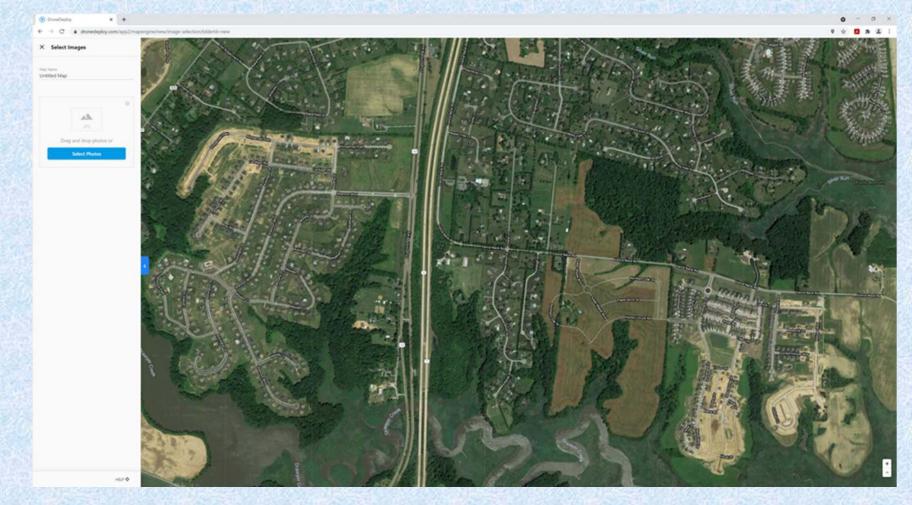
Drone Deploy Image Upload


Grab all the nadir images previously compiled in a single file. Do not include any images not part of the same flight or part of multiple backto-back flights from the same home point with the same altitude setting/camera settings, etc.



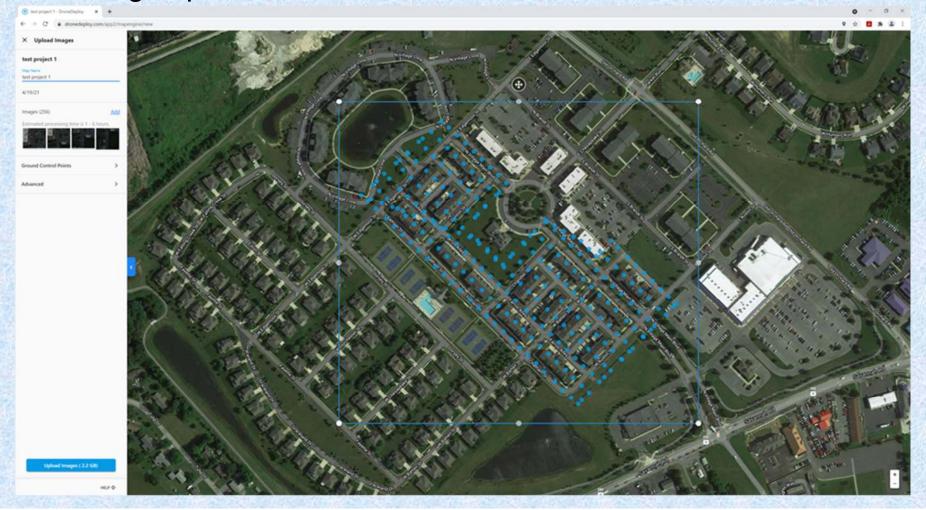
Zoomed in version of the same image showing target. There were a total of 422 images for the flights to be uploaded.

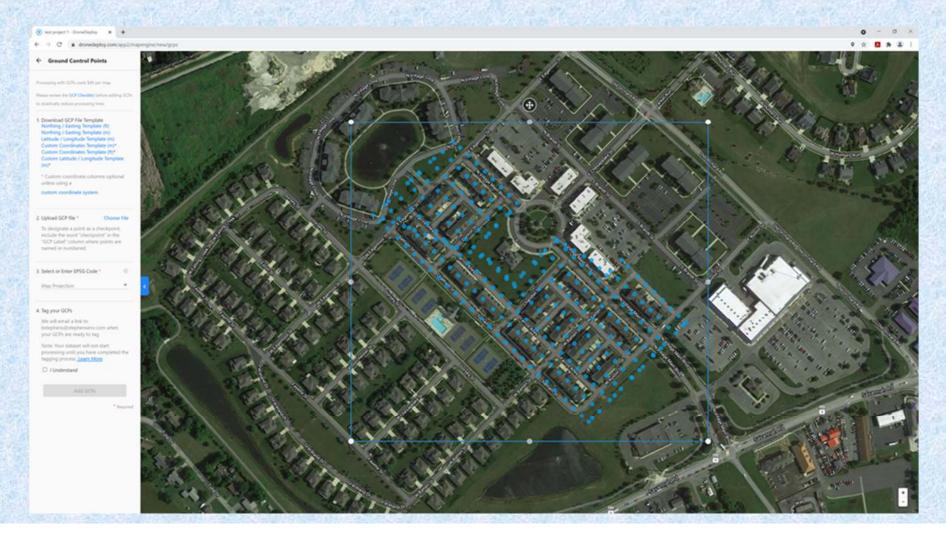

Log into Done Deploy and go to "My Dashboard". You must have an account (monthly fee) to process a real project.



This website uses cockies and other technology to provide you an easier, more personalized experience and customize advertising. To find out more, see our Privacy Policy.

Create a new project.


Upload the flight images by selecting them from the file as shown.


Select and upload all at once. This might take a minute.

rganize • New folder						H · 0	
	^	A	Date modified		-		
Quick access		Name		Туре	Size		
Desktop		 DJI_0691 DJI_0692 	12/23/2020 12:42 PM	JPG File	9,985 KB 8,497 KB		
Downloads	Q	DJI 0693	12/23/2020 12:42 PM 12/23/2020 12:42 PM	JPG File	8,526 KB		
Documents	1	DJI_0694	12/23/2020 12:42 PM	JPG File	8,520 KB		
		DJI 0695	12/23/2020 12:42 PM	JPG File	8,810 KB		
Pictures	1	 DJI_0695 DJI_0696 	12/23/2020 12:42 PM	JPG File	9.069 KB		
1646_EQ_EPA_COMPLAINT	*	DJI_0697	12/23/2020 12:42 PM	JPG File	9,069 KB		
USGS_TOPO_SCANS_PAGS_06_19_2019	*	DJI_0698	12/23/2020 12:42 PM	JPG File	9,029 KB		
115APPLE_01-06-2021_DUMP		DJI_0699	12/23/2020 12:42 PM	JPG File	8,748 KB		
117APPLE_05-10-2021		DJI_0700	12/23/2020 12:42 PM	JPG File	8,645 KB		
SA SA		DJI_0701	12/23/2020 12:42 PM	JPG File	8,717 KB		
SEMINAR-DRONE MAPPING		DJI 0702	12/23/2020 12:42 PM	JPG File	8,513 KB		
Schubert Brone in Firing		DJI_0703	12/23/2020 12:42 PM	JPG File	8.641 KB		
o Creative Cloud Files		DJI 0704	12/23/2020 12:42 PM	JPG File	8.876 KB		
Dropbox		DJI_0705	12/23/2020 12:42 PM	JPG File	9,008 KB		
		DJI 0706	12/23/2020 12:43 PM	JPG File	9,456 KB		
This PC		DJI 0707	12/23/2020 12:43 PM	JPG File	9,322 KB		
SDXC (G:)		DJI_0708	12/23/2020 12:43 PM	JPG File	8.880 KB		
DCIM		DJI_0709	12/23/2020 12:43 PM	JPG File	8,575 KB		
52,51111		DJI 0710		JPG File	9,695 KB		
Network	~						
Network	~	 DJI_0710 DJI_0711 	12/23/2020 12:43 PM 12/23/2020 12:43 PM	JPG File JPG File	9,695 KB 9,762 KB		

Once the initial upload is complete, you can see the locations of the images per onboard GPS.

Now upload the GCP file as saved in the template.

If accepted, the GCPs will automatically appear as blue balloons.

🕐 test propert 1 - DraneCepticy 🗶 🛨

Ground Control Points

Proceeding with GCPs such Self per map.

Plazar miss the **ICP Consist** before adding 0 to disctoring milest processing time.

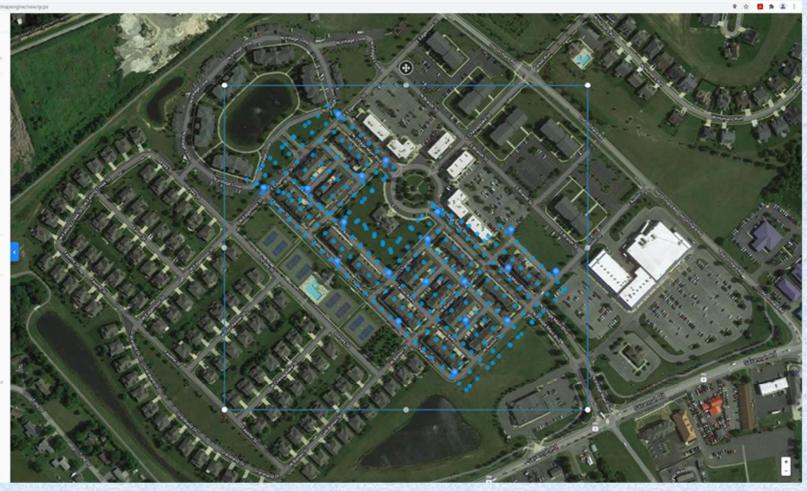
Download GCP File Template Northing / Earling Template (1) Northing / Earling Template (n) Latitude / Longitude Template (n) Custom Coordinates Template (n) Custom Coordinates Template (n) Custom Coordinates Template (n) Custom Coordinates Template (n)

* Custom coordinate columns option unless using a custom coordinate system.

2. Optical GCP file 1 File MO, OCPL, Semplete, File, ... To designate a societ as a check

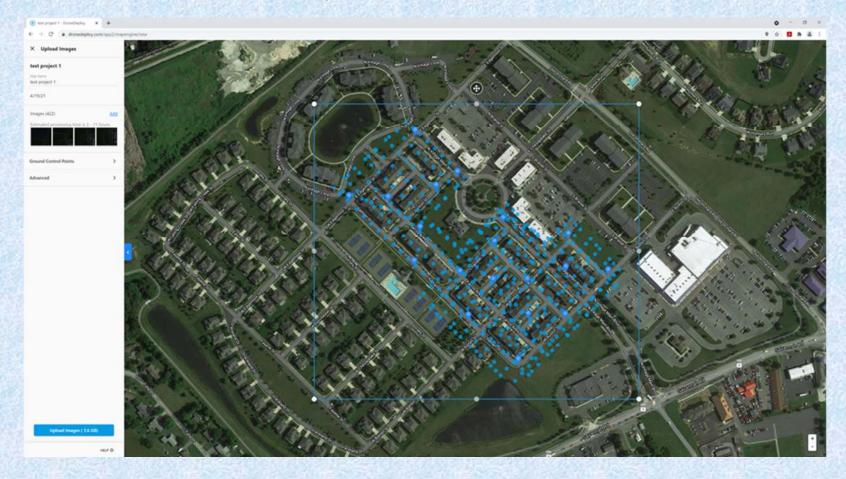
include the word "checkpoint" in the "SCP Label" column where points a named or numbered.

3. Select or Enter EPSG Code * We have be NADE3(2011) / Delamary (%05)

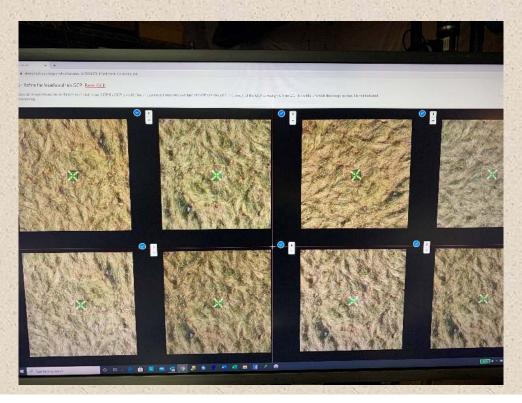

4. Tag your GCPs

We will email a link to betephensill stephensenic cont w your GCPs are ready to tag.

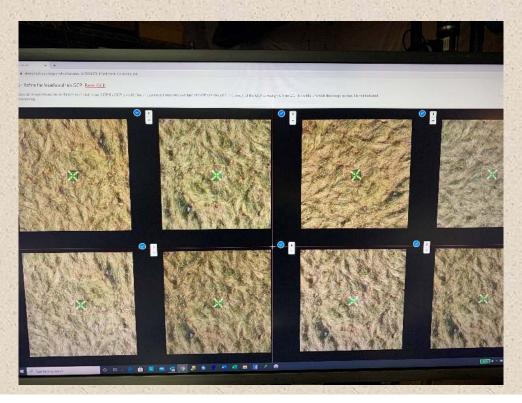
Note: Your dataset will not start processing until you have completer tapping process. Learn More

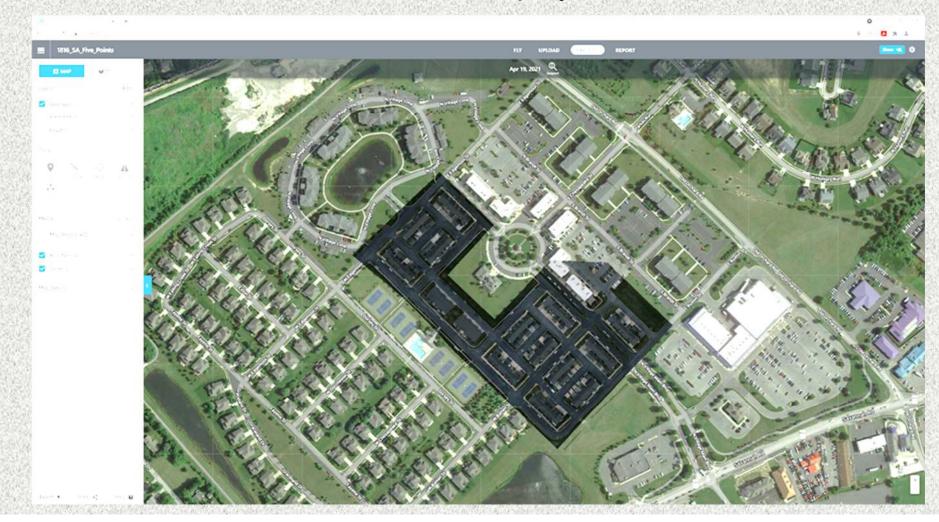

C I Understand

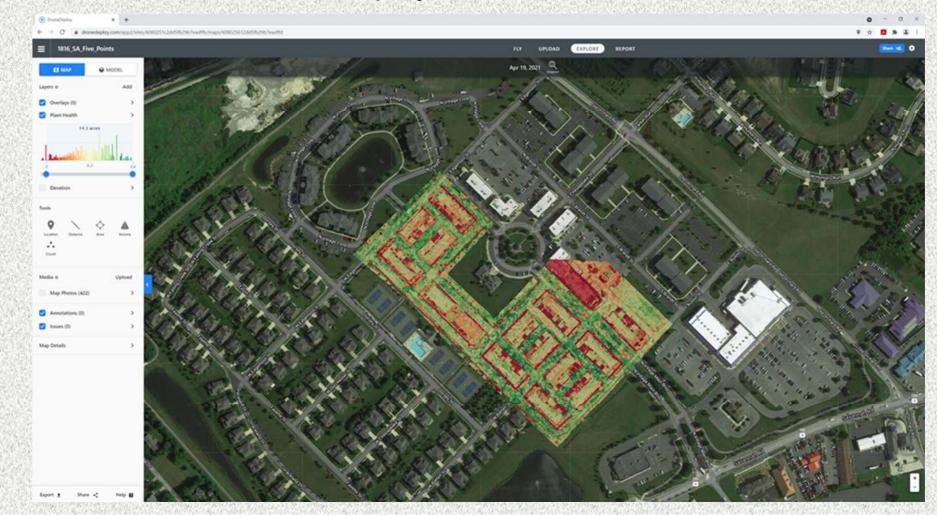
AMOOPS

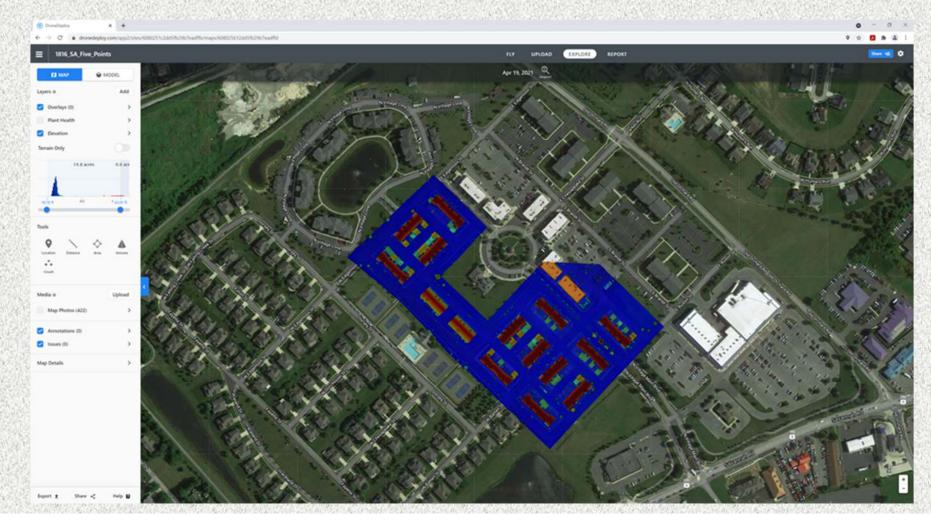


0 - 0


Add any additional cameras from any additional flights. The upload and wait for an email. It will ask you to pay for a map that has GCPs before you continue.


Double click on the "View Map" button in the email you get back from Drone deploy and it will open automatically. You must then verify and/or match the GCPs as identified in all images within which each occurs. Sample provided below. Once all the GCPs are matched, resubmit and await another email with the processed map.


Double click on the "View Map" button in the email you get back from Drone deploy and it will open automatically. You must then verify and/or match the GCPs as identified in all images within which each occurs. Sample provided below. Once all the GCPs are matched, resubmit and await another email with the processed map.


Finished Orthomosaic in Drone Deploy.

Plant Health in Drone Deploy.

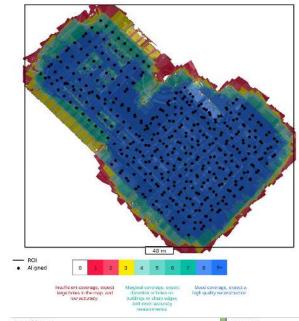
Elevation Model in Drone Deploy.

Drone Deploy Quality Report

1816_SA_Five_Points -1816_SA_Five_Points

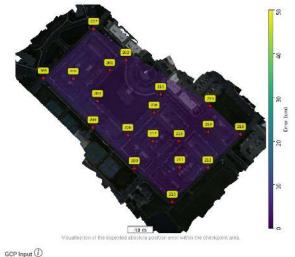
Captured: Apr 19, 2021, Processed: Apr 21, 2021

Map Details Summary ①


Project Name	1816_SA_Five_Points - 1816_SA_Five_Points	
Photogrammetry Engine	DroneDeploy Proprietary	
Date Of Capture	Apr 19, 2021	
Date Processed	Apr 21, 2021	
Processing Mode	Standard	
GSD Orthomosaic (GSD DEM)	0.48in/ps (DEM 1.94in/px)	
Area Bounds (Coverage)	2278097.43ft ² (56%)	
Image Sensors	DJI-F06520	

Quality & Accuracy Summary ①

Image Quality	High texture images	
Median Shutter Speed	1/1000	
Processing Mode	[Standard Mode Designed to produce the best photogrammetry output based on the input magnry include predominantly and/integer/ for most efficient mapping of large fields and cross, netural open terrain, and generating tographical maps. Entriefs hard crossite are not recommended for reconstructing the ables of buildings, overhangs, at complex acujament, include hortzmatal and oblique imagnry to optimize processing for high resolution 3D reconstruction of buildings.peeck & converse.)	
Images Uploaded (Aligned %)	422 (100%)	
Camera Optimization	0.02% variation from reference intrinsics	
GCP & Checkpoint count	19 GCPs - Maan RMS Fran 0.91in	


Preview ①

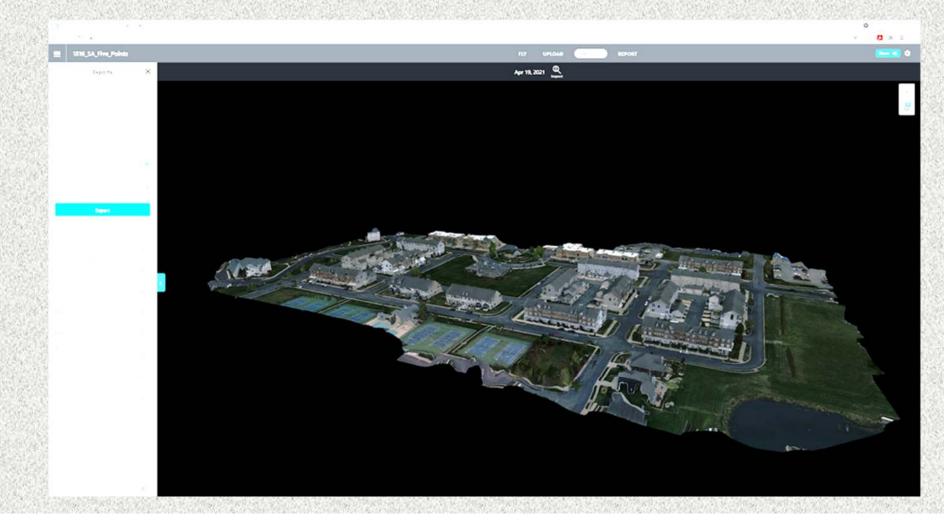
Orthomosaic Coverage ①

DJI - FC6520
422
5280x3956 (21MP)
56.70
11 images/pixel
1/1000

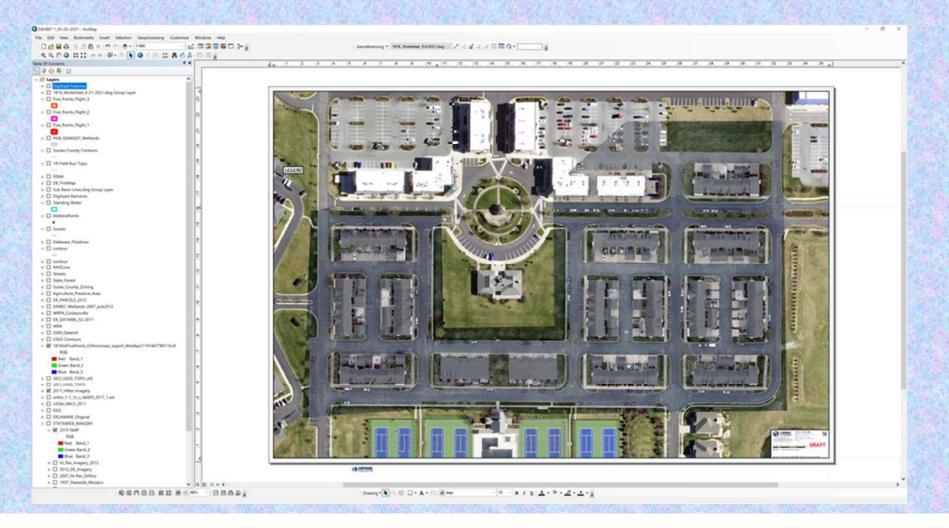
Drone Deploy Quality Report

EPSG-6436 - NAD83(2011) / Deleware (ftUS) EPSG Code

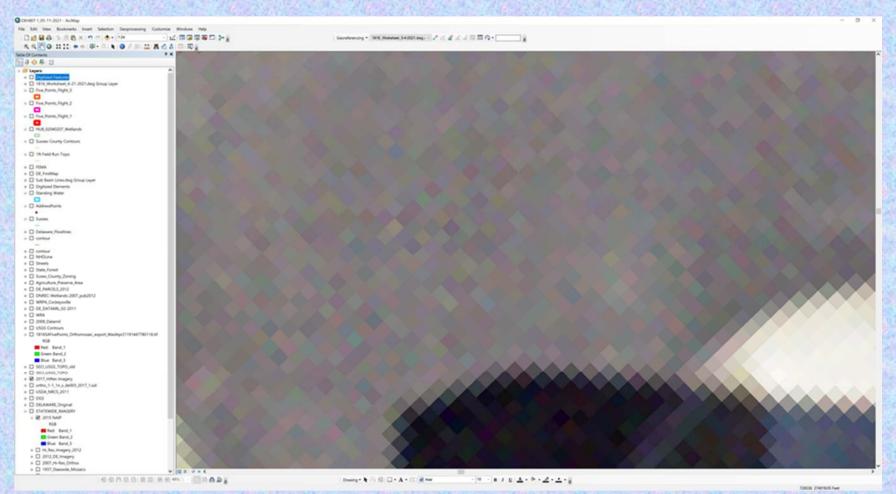
GCP Geolocation Error

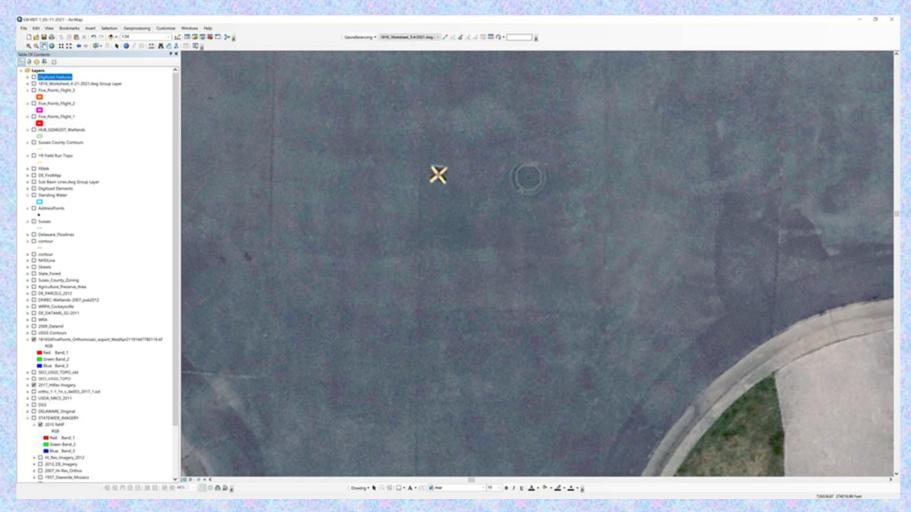

GOP data is used to constrain the map reconstruction so real world error between GCPs can ONLY be evaluated using Checkpoints. Error on GCPs is NOT representative of map error, instead it allows you to identify GCPs that have issues: for example incomed survey (contons, or that have been improperly togged, typical error should be less than a few certimeters for well togged COPs.

GCP Label	X Error (in)	Y Error (in)	Z Error (in)
201	0.5906	0.7598	-0.3150
202	0.5378	0.9882	1.1929
203	1.2362	0.2047	0.2913
204	1.6732	1.1890	1.3307
205	0.3307	1.0276	1.3307
-206	0.8551	1 3 268	-1.7441
207	-1.8071	0.5591	0.3858
208	0.9724	-1.3661	-0.2835
209	0.5906	-0.7638	-0.3780
210	-0.3622	0.3976	-0.3465
211	0.9898	0.3189	0.1693
212	-1.4331	0.5000	2.0433
213	0.6850	0.7165	1,1969
214	-0.2756	0.6260	-0.405
215	0.2913	-0.5906	-1.4803
-216	0 5254	-1.2699	-0.7923
217	0.0748	0.6260	-1.3970
218	0.3150	-0.0984	0.3819
219	0.4094	1.0276	-0.9055
Total (RMSE) Excludes Outliers	0.8560	0.8400	1.0293

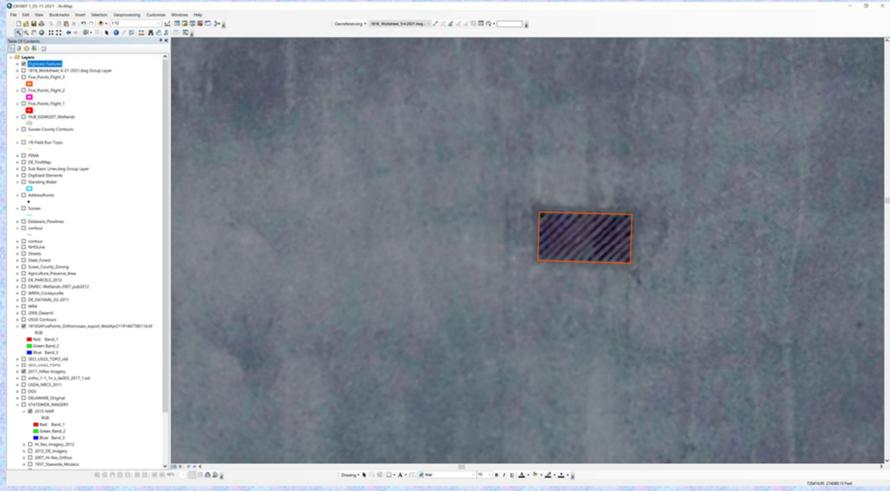

Densification and Meshing ①

Processing Mode	[Standard Mode: Designed to produce the best photogrammetry output based on the input imagery, include producements and imagery for some at finitian imaging of hears finited used image, nature approach generating topographical maps. Entirely nadir collects are not recommended for reconstructing the sides of buildings, overlands, or contalex equipment. Include horizontia and oblique imagery to optimize processing for high resultion 30 inconstruction of buildings process & conveys.]
Processing Mode Quality	High
Nadir Images	100% Include oblique or horizontal images to improve reconstructions of man-made structures.
Oblique mages	0%
Horizontal mages	σs
Fotal Points	20.4 million
Paint Claud Density	21,98 points/ft ²
Mesh Triangles	3.8 million


3D Model in Drone Deploy.


Finished Orthomosaic in ArcGIS.


1:24 (1 inch = 2 feet) version of the 2017 1ft Pixel Res Imagery.


1:24 (1 inch = 2 feet) same view, of the Digital Ortho.

Map View of a portion of the finished work product. Note redoutlined Catch Basin

1" = 1 ft enlargement of surveyed outline over the Inlet as independent check on accuracy of the ortho.

Completed Project

Q 004887 1,05-05-2021 - AnMap File Edit View Bookmarks In 0486 5 8 8 × 9 * . . . Genelescop • 1898, Minister, 54202 Aug. • 🖌 🖉 🖉 🖉 🖬 🖽 🖓 • 🔛 **⊒**∦ 8800 11 ++ #- 1 • • 1 1 1 AdA 0 10 Table Of Conterms ... 2008:2 - 12 Layers - SR Chailed LISEN = 😥 Digi-Light Post high - R Dep-MH Depairs Deprison and -- 😥 Digi Value or padiental Opringe Tream Br Opchaiting Dutter Opchaiting 12 ٠ in 😢 Dep-Large Tree or Bush Opinter 10000 = 🗹 Dip-Building Dutline Dybielle 68.1 100 Dg-C8 lives 1 1 1 9.8 2 6 - R Digi-fence = 🔀 Dig-Landscape = 12 Dy-RC = D MO,60% toeth -..... -----. + C Owkports ALL DOT ALL T WAR TO A DATA OF A = D Aeral Targets announting a DEDIT 10.00 * D 1816,Worksheet,5-4-3021.dwg Group Layer = 12 Dig-Stop Bar = 8 Dys-Cit Seets * D 1816, Worksheet, 4-21-3521, deg Group Leyer - C Fee Form Flight 3 + C Fue Parts Flaght 2 [] Free,Form,Flight,1 [] [] Hull,52045207,melands > D Surgers County Contours Constants, > D 18 Feld Run Tope PIMA OK, FromMap CA 1999 . = D Summer * D Delaware, Rowlines = 🛛 container G15768 V BB DHK ROMODED BURN - DRADE Crassing - 💽 🖓 🗐 🗋 - A - 🖄 🕷 Aver 10 - B / B / B - D - 2 - 1 - 2 -236 547 index

QUESTIONS?
